

2022 NFL Big Data Bowl

- Annual Big Data Bowl
- Innovation with player tracking data
- Hosted by Kaggle
- The goal:
 - 1. Create a new special teams metric
 - 2. Quantify special teams strategy
 - 3. Rank special teams players

Expected Return Yards

- How many yards will the returner gain at the moment they receive the ball?
- Variables used to determine Expected Return Yards
 - The yard line the ball was kicked to
 - The location the returner received the ball
 - Distance between returner and defenders (kickoff team)
 - Speed of defenders
 - Kick Type (Flat, Deep, or Pooch)
 - Catch Type (Dropped or Caught)

YARD LINE RECEIVED: -2 yds AUG DEFENDER DISTANCE: 33.7 yds Y POSITION: Right KICK TYPE: Deep RESULT: Return

> EXPECTED YARDS: 26 yds RESULT: 24 yd line

> > LOADING

Why Use Machine Learning for Player Tracking Data?

- Ranking
 - Developing an understanding of successful and unsuccessful attributes
- Payment
 - Creating a tangible metric that can be associated with an increase in pay
- Health
 - Understanding the likelihood of an injury or other statistics that can help make the game safer

Data Cleaning

- Removing NA values
 - Removed observations when football was tracked
- Filter
 - Kickoff plays only
 - Frame ID of 'Kick Received'
 - No squib or onside kicks
 - Returners only
 - Defenders become a separate feature

```
{r}
sort(colSums(is.na(tracking2018)))
          time
                                                displayName
                      frameId
                                      gameId
                                                     playId
          team
playDirection
                                         dir
                                                      nflId
                                                     555537
                       555537
                                      555537
  jerseyNumber
                     position
        555537
                       555537
```

```
table(tracking2018[is.na(tracking2018$nflId), "displayName"])

football
555537
```

Data Cleaning (Continued)

Display Name	Х	Y	Team	Returner?
Player 1	39.08	24.57	Home	No
Player 2	41.11	32.25	Home	No
Player 3	43.08	38.77	Home	No
Player 4	2.5	30.5	Home	Yes
Player 5	44.11	24.92	Home	No
Player 6	43.9	21.75	Home	No
Player 7	39.07	41.27	Home	No
Player 8	45.07	49.79	Home	No
Player 9	32.17	38.71	Home	No
Player 10	50.5	46.24	Home	No
Player 11	21.67	43.81	Home	No
Defender 1	34.23	31.98	Away	No
Defender 2	50.44	17.86	Away	No
Defender 3	43.95	27.63	Away	No
Defender 4	39.83	44.49	Away	No
Defender 5	40.75	33.99	Away	No
Defender 6	11.53	42.45	Away	No
Defender 7	44.18	42.04	Away	No
Defender 8	37.43	29.16	Away	No
Defender 9	20.92	38.29	Away	No
Defender 10	33.04	34.62	Away	No
Defender 11	33.75	35.52	Away	No

Expanding the data so we go from 1 observation for each player, we have 11 observations for each player to include defenders.

Feature Engineering

- Distance (Pythagorean Theorem Used)
- Yard Result
 - YardResult_Over25 (1 = yes)
- Yard line 'Kicked To'
 - 5 Yard Bin 'Kicked To'
- Y_Position (Left, Right, or Center)
- Defender Variables
 - Average Distance
 - Average Speed
 - Average Acceleration

Modeling Stages

- Linear Regression
- Logistic Regression for 25 Yard line
- ElasticNet
- Random Forest

Linear Regression

Adjusted R^2= .30

- As the yard line kicked to decreases by 1 yard, or the further the ball is kicked, the returner typically gains .28 more yards
- As the average distance between the defenders and the returners increases by 1, the returner typically gains an average of .43 more yards.

	kick Return Yardage			
Predictors	Estimates	CI	p	
(Intercept)	-4.09	-8.53 - 0.35	0.071	
kickedto yardline	-0.28	-0.360.19	< 0.001	
KoTeamAvgDist	0.43	0.35 - 0.52	<0.001	
KoTeamAvgA	1.09	0.28 - 1.89	0.008	
Y position [left]	-0.82	-1.530.12	0.022	
Y position [right]	-0.98	-1.690.27	0.007	
kickType [F]	1.00	-0.27 - 2.26	0.123	
kickType [P]	-2.62	-3.761.49	< 0.001	
specialTeamsResult [Return]	10.15	8.22 – 12.07	<0.001	
Observations	2576		- 2	
$R^2 / R^2 \ adjusted$	0.299 / 0.296			

Modeling Performance

ROC Plot

Logistic Regression

• The AUC for the training and testing sets were .65 and .64 respectively

Random Forest

Best alpha 0.45

Lambda.min 0.039

Lambda.1se 1.10

Error 39.18

1. Metrics from 'Expected Return Yards' Model

Expected Return Yards: Yards a returner is expected to gain given X's

Efficiency: (Actual Return Yards – Expected Return Yards)

25 Yard Line Probability: Likelihood of a returner reaching 25-yard line

2. Quantify Special Teams Strategy

 A player can have an idea of when they should or should not return the ball out of the endzone at the moment of catching the ball

3. Ranking Players

 Efficiency can be measured and used to rank special teams players

How This Can Be Adopted?

Thank You

Any Questions?

Appendix

Average Yard Result based on Kick_to bins

```
#Here I am making a shortcut for the ggplot of the returns plot with Bin and yard result
g <- ggplot(returns, aes(x = kickedto_5yardBin, y = yard_result, color = kickedto_5yardBin)) +
    labs(x = '5-Yard Bin Kicked To', y = 'Yard Result')

#Since Boxplots are boring, I made a violin plot instead
g + geom_violin(aes(fill = kickedto_5yardBin), size = 1, alpha = .5) +
    geom_boxplot(outlier.alpha = 0, coef = 0,
    color = "gray40", width = .2) +
    scale_fill_brewer(palette = "Dark2", guide = "none") +
    coord_flip()</pre>
```


Average Yard Result based on Yard-line Kick to bins

```
```{r}
g <- ggplot(returns, aes(x = kickedto_5yardBin, y = yard_result, color = kickedto_5yardBin)) +
 labs(x = '5-Yard Bin Kicked To', y = 'Yard Result')
b + geom_violin(aes(fill = kickedto_5yardBin), size = 1, alpha = .5) +
 geom_boxplot(outlier.alpha = 0, coef = 0,
 color = "gray40", width = .2) +
 scale_fill_brewer(palette = "Dark2", guide = "none") +
 coord_flip()
 35-40
 30-35
 kickedto 5yardBin
 25-30
 back-half endzone
 20-25 -
 front-half endzone
5-Yard Bin Kicked To
 0-5
 15-20
 5-10
 10-15
 10-15
 15-20
 20-25
 5-10
 25-30
 30-35
 35-40
 0-5
 front-half endzone
 back-half endzone
 25
 75
 50
 100
 Yard Result
```











